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A physically based flux limiter for QUICK calculations
of advective scalar transport
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SUMMARY

Transient, advective transport of a contaminant into a clean domain will exhibit a moving sharp front that
separates contaminated and clean regions. Due to ‘numerical diffusion’—the combined effects of ‘cross-
wind diffusion’ and ‘artificial dispersion’—a numerical solution based on a first-order (upwind) treatment
will smear out the sharp front. The use of higher-order schemes, e.g. QUICK (quadratic upwinding)
reduces the smearing but can introduce non-physical oscillations in the solution. A common approach to
reduce numerical diffusion without oscillations is to use a scheme that blends low-order and high-order
approximations of the advective transport. Typically, the blending is based on a parameter that measures
the local monotonicity in the predicted scalar field. In this paper, an alternative approach is proposed
for use in scalar transport problems where physical bounds CLow�C�CHigh on the scalar are known
a priori. For this class of problems, the proposed scheme switches from a QUICK approximation to
an upwind approximation whenever the predicted upwind nodal value falls outside of the physical range
[CLow,CHigh]. On two-dimensional steady-state and one-dimensional transient test problems predictions
obtained with the proposed scheme are essentially indistinguishable from those obtained with monotonic
flux-limiter schemes. An analysis of the modified equation explains the observed performance of first- and
second-order time-stepping schemes in predicting the advective transport of a step. In application to the
transient two-dimensional problem of contaminate transport into a streambed, predictions obtained with
the proposed flux-limiter scheme agree with those obtained with a scheme from the literature. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fate and transport of solute in the environment can often be modelled by an advection dispersion
equation. For example, consider a well-mixed stream containing a contaminant at concentration
C =C0 flowing over an initially ‘clean’ sediment bed C = 0. The contaminant is transported
into the sediment streambed by a combination of advection and dispersion processes. Advection
transport is via flow into and through the sediment. The sediment flows can be driven by (i) pressure
variations along the water–bed interface [1–3], and (ii) the longitudinal stream slope. When the
stream slope S is constant and the pressure variation along the water–bed surface is induced by a
periodic standing surface wave of length L and amplitude a, the dimensionless velocity field in a
longitudinal section along the centreline of the stream is [2, 3]

u(x, y) = −� sin(2�x) exp(2�y) + 1

2R

v(x, y) = −� cos(2�x) exp(2�y)
(1)

where R = a/LS is the ratio of wave steepness to streambed slope. In streambeds where the
advective transport via (1) dominates, the change of concentration in the bed is modelled by a
two-dimensional transient advection equation, in dimensionless form

�C
�t

+ �(uC)

�x
+ �(vC)

�y
= 0 (2)

The initial condition is a clean bed, C(0�x�1, 0<y�1, t = 0) = 0 and appropriate boundary
conditions are: a Dirichlet condition C = 1 along the bed surface y = 0, a far field condition of
zero concentration gradient along y = 1, and periodic boundary conditions along the sides x = 0
and 1.

A valid solution of (1) and (2) should result in the prediction of a moving sharp front separating
contaminated (C = 1) and clean (C = 0) bed regions. It is well known, however, that a basic
numerical solution using a first-order time and space (upwinding) approximations will predict a
smeared region 0<C<1 between the contaminated and clean region; this smearing can be attributed
to two features:

1. In a multi-dimensional problem, the flow directions will not be aligned with the coordinate
directions of the grid and the resolution into the coordinate direction results in an unphysical
transport of contaminant in a direction normal to the flow. This feature, referred to as ‘cross-
wind diffusion’, will smear out a sharp front [4].

2. The second-order derivative terms in the truncation error of the first-order approximations
induce a dissipation behaviour in the solution in which sharp fronts and or pulses are ‘smeared’
out [5]. Note, the form of the truncation error is physically analogous to dispersion and as
such this dissipation error is referred to as ‘artificial dispersion’.

In the solution of a general scalar advection transport problem, both artificial dispersion and
cross-wind diffusion features will be present and it is convenient to collectively refer to these
features as ‘numerical diffusion’. Second-order schemes for approximating the advection term e.g.
QUICK [6] can dramatically reduce numerical diffusion. In such cases, however, the third-order
derivatives in the leading term of the truncation error will induce spurious oscillations (dispersive
errors) exhibited by a loss of local monotonicity and possible instability in the predicted solution
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[7]. An effective solution to this problem is to combine the second-order approximation for the
advection term with a so-called ‘flux-correction’ or ‘flux-limiter’ scheme, e.g. [6, 8–10]. Essentially,
these schemes use a measure of the local monotonicity in the predicted field to switch to a first-
order (upwinding) approximation whenever and wherever non-monotonicity is identified. The
effect is that the numerical diffusion, induced by the lower-order scheme, dissipates the genesis of
a spurious oscillation before it can damage the quality of the solution. Well-designed flux-limiter
schemes are able to produce sharp physical predictions in both steady state and transient scalar
advection problems. The essential contribution of this paper is to introduce a new flux limiter that
exhibits these properties. The novel and unique feature in the proposed scheme is in the criteria
used for the switch from the second-order to the first-order advection approximations. As noted
above, previous schemes use a measure based on the local monotonicity of the solution field.
In the proposed scheme, a physical switch based on the predicted upwind values falling outside
known physical limits (e.g. [0, 1] for the stream example problem) is used. It is demonstrated that,
although this simple scheme sacrifices a rigorous satisfaction of monotonicity, it does produce
high-quality solutions comparable to more involved monotonicity methods.

In the next section, a more detailed overview of flux-limiter methods is provided. Then the
mechanics of previously reported monotonic flux-limiting schemes are outlined. This is followed
by the presentation of the proposed physically based scheme. The approach is tested and its
performance compared to previously reported monotonicity methods. The performance comparison
includes a discussion of the role of the order of approximation used in the time stepping. The work
concludes with an application of the proposed scheme to a stream-bed contamination problem
along with a brief assessment of computational efficiency.

2. OVERVIEW OF FLUX-LIMITER SCHEMES

At a node point P , a control volume discretization of (2) will take the general form

VpC
new
P = VpCP − �t

∑
faces

(uface · nface)AfaceCface (3)

where, with reference to Figure 1(a), Vp is the volume, �t is the time step, Aface is the area of one
of the control volume faces, nface is the outward pointing normal on that face, uface is the velocity at
the face centre, and Cface is an approximation of the concentration on the face. Use of (3) requires
the estimation of the face concentrations in terms of values at node P and its neighbours (nb).
Following the work by Zalesak [8], in a general flux limiter the face concentration is estimated by
a weighted average of high (H) and low (L) order approximations, i.e.

Cface = (1 − �)CL
face + �CH

face (4)

where, depending on the scheme, the weight 0���1, can be a function of values of concentration
and velocity. When trying to mitigate the effects of numerical diffusion, typical flux-limiter methods
[9, 10] use weights and approximations in the general form (4) based on measures of the local
monotonicity. Such methods involve local calculation spread over several node points and employ
multiple schemes to ensure a smooth transition from the high- to low-order face approximation.
In contrast, the alternative flux-limiter scheme developed here opts for a simpler approach, using
an on/off weighting (� = 1 or � = 0) controlled by the single upstream nodal value falling inside
or outside of the dimensionless physical range [0, 1].
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Figure 1. (a) A general control volume and (b) volumes in a one-dimensional grid.

3. EXAMPLES OF MONOTONICITY FLUX LIMITERS

The basic idea behind a monotonicity flux limiter is to (i) define a measure of the local monotonicity
in the nodal scalar field and (ii) use this measure to determine the weights and approximation
schemes used in the general form of (4). In this section, the mechanics of two such schemes are
described: a well-established scheme SMART presented by Gaskell and Lau [9] and a recently
proposed scheme from Woodfield et al. [10] . For simplicity, the mechanics are presented in terms
of the structured one-dimensional arrangement of control volumes given in Figure 1(b); for a
complete derivation and discussion of the concepts behind the methods, the reader is directed to
the original references [9, 10].

3.1. The SMART scheme [9]
In the SMART scheme, the measure of local monotonicity is derived by comparing the gradient
in C between node P and its upwind node W with the gradient between the upwind node W and
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the far-upwind node WW , i.e.

�(P) = CP − CW

CW − CWW
(5)

A value of �<0 indicates a change in gradient and a loss of monotonicity in C. The value of � is
used to make the following choices in (4) (Cface = (1 − �)CL

face + �CH
face):

� =
{
0, �<0

1, �>0
(6a)

CL
face =CW (6b)

CH
face =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
CP , �<0.2

− 1
8CWW + 3

4CW + 3
8CP , 0.2���5

−CWW − 3CW , 5<�

(6c)

This scheme uses first-order upwind Cface =CW when monotonicity is lost (�<0) but switches
to the QUICK scheme Cface =− 1

8CWW + 3
4CW + 3

8CP—obtained by fitting a quadratic through
points P , W , and WW—for most of the cases where monotonicity is present. To ensure a smooth
switching to the upwind scheme and to truncate the QUICK scheme, alternative forms of CH

face are
used for very small (0<�<0.2) or large (5<�) values of the monotonicity, as shown by the first
and last components in (6c). The choice on the limits on � are given in [9], the reader is referred
to this work for full details.

3.2. The WSN scheme [10]
Woodfield, Suzuki and Nakabe (WSN) [10] propose an alternative scheme and demonstrate
its effectiveness in solutions on unstructured meshes. In this scheme, the monotonicity
measure is

�(P) = CI − Cmin nb

Cmax nb − Cmin nb
(7a)

where I is the upwind node, Cmin nb is the minimum value of C in the neighbourhood of
node I and Cmax nb is the corresponding maximum value; for the arrangement of nodes in
Figure 1(b):

�(P) = CW − MIN(CWW ,CP)

MAX(CWW ,CP) − MIN(CWW ,CP)
(7b)
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In this case, the measure is bounded, i.e. values of �>1 and �<0 indicate a loss of monotonicity.
The value of � is used to make the following choices in (4): (Cface = (1 − �)CL

face + �CH
face)

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, �<0
�

�
, 0����

1, �<�<1 − �

1 − �

�
, 1 − ����1

0, 1<�

(8a)

CL
face =CW (8b)

CH
face =− 1

8CWW + 3
4CW + 3

8CP (8c)

where � is a user defined variable, the value � = 0.2 is recommended. Unlike the SMART scheme
that switches between four approximations for the face value, the WSN scheme only switches
between the QUICK scheme—or a high-order equivalent on an unstructured mesh [10]—and the
upwind scheme. The user-defined variable � is used to ensure a smooth switch between the upwind
and QUICK schemes; the effect of changing this value is investigated in [10].

4. A PHYSICAL FLUX LIMITER

In the streambed contamination problem in addition to maintaining monotonicity of the concen-
tration field, a sound numerical solution should also ensure that at each node point CP ⊂[0, 1]
(assuming the scaling C =C/C0); this feature may not be universal but could be common to a wide
range of practical problems. If a numerical solver were to generate spurious oscillations, they would
be exhibited by nodes where CP /⊂[0, 1]. With this in mind, for problems where obvious physical
bounds on the scalar field can be identified, the following version of (4) Cface = (1−�)CL

face+�CH
face

is suggested:

� =

⎧⎪⎨
⎪⎩
0, CW<0

1, 0<CW<1

0, 1<CW

(9a)

CL
face =CW (9b)

CH
face =− 1

8CWW + 3
4CW + 3

8CP (9c)

Effectively the upwind scheme is switched on whenever the upwind value falls outside of the
physical range CW /⊂[0, 1]. At all other faces QUICK (or a suitable unstructured alternative [10])
is used. This is a simple scheme to apply since it only uses one nodal value in the switching
criterion and the switch is a simple on/off, i.e. smoothing transition zones (see (8a)) are not
required. From this point on the scheme will be referred to as the physically based scheme or phib
scheme.
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5. TESTING

Will such a simple scheme work? This can be determined by comparing its performance with the
SMART [9] and WSN [10] monotonicity methods on a range of test problems.

5.1. Cross-wind diffusion

The cross-wind component in numerical diffusion can be isolated and studied by considering a
steady state multi-dimensional problem. The classic test problem is advective transport across a
box at varying angles of flow direction. The governing equation is

�(uC)

�x
+ �(vC)

�y
= 0 (10)

and the boundary conditions and velocity direction are indicated in Figure 2. Part (a) of Figure 2
compares the proposed phib scheme with the WSN (� = 0.2) scheme for three different flow angles,
the agreement is almost exact. Both schemes show a marked improvement over the pure upwind
and QUICK schemes in Figure 2(b).

5.2. Transport of a top-hat pulse

The artificial dispersion component in numerical diffusion can be isolated and studied by consid-
ering one-dimensional transient advection problems; by definition cross-wind diffusion cannot be
present in one-dimensional geometry. A stringent test problem is the transport of a top-hat pulse;
the governing equations are

�C
�t

+ u
�C
�x

= 0, C(0, t�0) = 0, C(t = 0)=

⎧⎪⎨
⎪⎩
0, x<11

1, 11�x�20

0, 20<x

(11)

The solution is carried out for a unit velocity u = 1 on a uniform grid with a unit spacing �x = 1. In
this way, the time step �t can be directly equated to the Courant number (c= u�t/�x). Figure 3
shows explicit first-order time-stepping results on a uniform grid of �x = 1 and �t = 0.1. The
results show predictions of the concentration field obtained with the SMART, WSN (� = 0.2)
and phib scheme at time t = 460 (4500 calculations steps); the analytical solution at this time
is provided as a point of reference. All the schemes have a good performance transporting the
pulse over a long distance without much distortion or loss. Differences between the proposed phib
scheme and the alternative monotonicity schemes are very small.

5.3. Transport of a step function

A further one-dimensional transient problem—rich in performance information—is the advective
transport of a step function. This problem is essentially the one-dimensional version of the stream
problem; the governing equations are

�C
�t

+ u
�C
�x

= 0, C(0, t�0) = 1, C(x>0, 0) = 0 (12)
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Figure 2. Cross-wind diffusion: (a) solid line WSN scheme, symbols phib scheme and
(b) solid line QUICK, dashed lines upwind.

As with the top-hat pulse, the solution is obtained for a unit velocity u = 1 and a unit spacing
�x = 1 so that the time step �t can be equated to the Courant number (c= u�t/�x). Figure 4
shows explicit first-order time-stepping results for �t = 0.1 (c= 0.1). The results show predictions
of the concentration field obtained with the SMART, WSN (� = 0.2) and the phib scheme at time
t = 450 (4500 calculation steps); all the schemes’ predictions are essentially the same. The amount
of smearing in the numerical solution is spread over 2–4 cells, about 0.5% of the domain. To
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Figure 3. Advective transport of top-hat pulse, after 4500 steps and a Courant number c= 0.1.

indicate the need for a flux limiter the inset in Figure 4 shows the pure upwind and pure QUICK
solutions at time t = 50 (500 calculation steps); the extensive smearing of the upwind scheme and
non-physical oscillations of the QUICK scheme are very apparent.

Note an over-shoot is required to activate the phib scheme, so a small amount of non-
monotonicity is inevitable. The results in Figures 3 and 4, however, clearly indicate that any
non-monotonicity and resulting physical oscillations in the phib scheme are negligible.

6. TIME STEPPING

6.1. Transport of step function at larger Courant number

In the transient test problems discussed above, a relatively conservative choice of time step (Courant
number) was used. When the Courant number c is increased, the performance of the schemes with
a fully explicit time can deteriorate or even break down. Figure 5 shows predictions of the step
advection problem after 900 calculation steps when c= 0.5 (a fivefold increase in the time step
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Figure 4. Advective transport of step function after 4500 steps at c= 0.1; inset shows upwind
and QUICK solutions at early times.

used in Figure 4). When first-order time stepping is used predictions from the phib scheme (open
symbols in Figure 5) indicate a consistent non-physical over- and under-shoot in the vicinity of
the step. The phib scheme requires that the upwind value falls outside of the physical range [0, 1]
before switching to the dissipating upwind scheme and if the Courant number c is large there
is insufficient time for this non-physical value to be dissipated. Despite the appearance of non-
physical values in the first-order time-stepping phib scheme, the predictions are free of oscillations.
In contrast a first-order time-stepping implementation of SMART (dashed line in Figure 5) breaks
down into oscillations.

6.2. Second-order time stepping

The obvious solution to the poor performance of the step advection at larger values of c is to employ
a second-order time stepping. In general, this will mean formulating a Crank–Nicolson implicit
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Figure 5. Advective transport of step after 900 steps with c= 0.5.

scheme for (12). In the case of the one-dimensional test case, however, an explicit second-order
time stepping can be obtained by calculating the face values by [6]

Cface = cCn
W + (1 − c)Cn

face (13)

where Cn
face is the flux-limited second-order in space face approximation at the old time level n.

Equation (13) can be viewed as an additional flux limiter that, depending on the value of c,
‘bleeds’ in enough upwinding to stabilize the chosen flux limiter. When (13) is used on the test
problem it effectively removes the unphysical features in the first-order time stepping, Figure 5
shows second-order phib (solid symbols) and SMART (solid line) solutions for c= 0.5. For this
choice of Courant number, the smoother results, however, come at the cost of a higher level of
dissipation, i.e. the predicted front is significantly wider than that predicted with the first-order
schemes in Figures 4 and 5.
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6.3. Analysis of the modified equation

The full nature of the performance of the first- and second-order time-stepping schemes applied
to one-dimensional transport (step function) can be demonstrated by an analysis of the modified
equation, i.e. the equation the finite-difference equation solves. With reference to Figure 1(b),
using Taylor expansions for the concentrations at node W and E about P, and time level n + 1
about n, the modified equation of (12) for first-order approximations in space and time is given
by the right-hand side of

Cn+1
P − Cn

P

�t
+ u

Cn
P − Cn

W

�x
= �C

�t

∣∣∣∣
n

P
+ u

�C
�x

∣∣∣∣
n

P
− D

�2C
�x2

∣∣∣∣∣
n

P

+ O(�x2 + �t2) (14)

(see Appendix A). Hence the first-order equation solves an advection–dispersion equation with
grid-size-dependent diffusivity:

D = (1 − c)
u�x

2
(15)

where c= u�t/�x is the Courant number. In the cases where c<1, this term acts as an artificial
dispersion and, as observed in the results (inset in Figure 4), smears out the sharp front. Progress
can be made from (14) on noting that when second-order space approximations (e.g. QUICK or
Central Difference) are used to approximate the concentration at the east (e) and west (w) face of
the Pth control volume (Figure 1(b)) a second-order approximation for the second derivative of
C at node P (see Appendix A) is

−CP + Ce + CW − Cw

�x
= �x

2

�2C
�x2

+ O(�x2) (16)

Adding u times this equation to (14) results in the modified equation for a second order in space
and first order in time approximation of (12)

Cn+1
P − Cn

P

�t
+ u

Cn
e − Cn

w

�x
= �C

�t

∣∣∣∣
n

P
+ u

�C
�x

∣∣∣∣
n

P
−

[
−c

u�x

2

]
�2C
�x2

∣∣∣∣∣
n

P

+ O(�x2 + �t2) (17)

When flux-limiter forms are used to calculate the face concentrations the left-hand side of this
equation is the finite-difference equation used in obtaining the first-order time results in Figures 4
and 5. The leading term in the truncation error now has the form of a negative diffusion. Although
this feature maintains the sharp front by reducing dissipation, it also amplifies any oscillations
(dispersion) that occur during the solution process. Hence, as confirmed by the results for Figures 4
and 5, sound (oscillation free) results can only be obtained with second-order space, first-order time
approximations of (12) when flux limiters (SMART, WSL, phib) are employed and the Courant
number is modest c∼ 0.1. If flux limiters are not used or c is larger (>0. 25) the negative diffusion
results in non-physical predictions and instability [7].

A second order in space and time approximation for (12) can be obtained by multiplying (16)
by (1 − c):

(1 − c)
−CP + Ce + CW − Cw

�x
= (1 − c)

�x

2

�2C
�x2

+ O(�x2) (18)
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Figure 6. Results for streambed contamination. The solid line obtained by the phib scheme and dashed
line obtained by the SMART scheme can hardly be distinguished.

and adding u times the result to (14)

Cn+1
P − Cn

P

�t
+ u

Ce − Cw

�x
= �C

�t

∣∣∣∣
n

P
+ u

�C
�x

∣∣∣∣
n

P
+ O(�x2 + �t2) (19)
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Figure 7. Profile across smeared region for R = 5 at t = 3.

where the face concentrations Ce and Cw are given by (13). The fully second-order form in (19)
has no diffusion term in the truncation error. Hence, as confirmed by the fully second-order results
in Figure 5, due to the loss of the negative diffusion term, predictions obtained with the scheme
have less dispersion than first-order time, second-order space schemes, but more dissipation.

7. APPLICATION TO STREAMBED CONTAMINATION

The problems investigated above are somewhat idealized. It is worthwhile to see how the pro-
posed physically based phib scheme operates on the more realistic problem of contamination
of a streambed governed by Equations (1) and (2). Figure 6 shows explicit (first order in time)
predictions on a square grid of size �= 0.005 (200× 200 control volume) with a time step of
�t = 4× 10−5. The figure shows the iso-concentration lines C = 0.99 and 0.01 at three times,
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t = 0.2, 1.0 and 5.0, for two different steepness ratios, R = 5 and 1. The early time results are
almost identical. As time increases, however, the asymmetry in the concentration filed induced by
a steeper stream slope (smaller value of R) and thereby stronger flow from left to right is clearly
seen. Figure 7 shows the change in solute concentration in the streambed C across the smeared
region delineated by the two iso-concentration lines. The phib scheme performs very well on the
stream problem. In particular, (i) the non-physical smearing in the concentration field is restricted
to a narrow band, never more than ∼ four cells wide (see drop box in Figure 6), (ii) the profile in
C across the smeared region is smooth with no under- or over-shoots (see Figure 7) and (iii) the
phib and SMART predictions are in very close agreement (see drop box in Figure 6 and profile in
Figure 7).

Within the context of the practical contamination problem, it is worthwhile to briefly investigate
the performance of the phib scheme. In arriving at the predictions for R = 1 at time t = 3 (the
right bottom panel in Figure 6) the wall clock time (to nearest minute) for the phib scheme (on
a standard desktop PC) is ∼ 3min. This contrasts favourably to the wall clock time of ∼ 34min
required for the author’s implementation of the SMART scheme. The phib scheme can also be
implemented in an implicit time-stepping solution. A fully implicit QUICK simulation of the
R = 1 case out to time t = 3 (using a time step of 2× 10−4) takes ∼ 12min. When the phib flux
limiter is implemented in this code the wall clock time increases marginally to ∼ 13 min; results
(concentration fields) are indistinguishable from the explicit results in Figure 6.

8. CONCLUSIONS

Low-order numerical methods for advective dominated scalar transport are well known to suffer
from numerical diffusion errors that tend to smear out (dissipate) sharp gradients in the solution.
Basic high-order methods may mitigate the effects of numerical diffusion but often at the cost of
introducing non-physical oscillations (dispersion errors). A solution is to use the so-called flux-
limiter schemes that optimize the switching between high- and low-order advection approximations
to limit both dispersion and dissipation. In this paper, a new flux-limiter QUICK scheme has been
introduced for application in scalar transport problems where physical limits on the scalar are
known a priori. In contrast to previous flux limiters that employ a monotonicity measure to switch
between high-order and low-order schemes the proposed scheme uses a measure based on the
upwind nodal value falling outside of the known bounds on the scalar field. This switch is simple
to apply and could be readily implemented into existing codes with two steps:

1. default face value to second-order face value, Cface =C2nd
face;

2. if upwind value CW /⊂[0, 1] reset face value to Cface =CW .

Across a range of test problems, this simple physically based limiter ‘phib’ matches the performance
of more involved, monotonicity-based schemes. In steady-state problems, sharp gradients are
maintained when the flow is not aligned with the numerical grid. In transient problems, if the
Courant number is modest c∼ 0.1, a first-order time-stepping implementation can transport step
functions or pulses long distances without loss of shape or strength. An analysis of the modified
equation provides a theoretical basis for this behaviour and also indicates why the first-order in
time scheme breaks down when c is too large and why second order in time solutions show more
dissipation.
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The phib scheme has also been successfully applied to the practical problem of contamination
of a streambed. Results maintained a sharp front between contaminated and clean regions and
were essentially identical to those obtained with a well-known and tested monotonicity scheme.
These findings provide a high degree of confidence to apply the phib scheme to more general
cases where dispersion in the transport cannot be neglected.

Solutions have been presented and developed on a structured grid and the QUICK scheme has
been used as the high-order scheme in the flux limiter. There is reason to expect that the phib
scheme would also work on an unstructured grid if an appropriate second-order scheme is used in
palace of QUICK, e.g. the scheme presented by Woodfield et al. [10]. Further testing is required
to confirm this speculation.

The bottom line is that when appropriate a priori physical constraints are known for a transported
scalar field the proposed phib flux-limiter scheme is very easy to apply and would, based on the
results shown here, be expected to produce predictions in close agreement with more involved
monotonicity schemes. The key advantage of the proposed scheme is that, unlike flux limiters in the
literature that use multiple switches and require several nodal values to calculate the monotonicity
parameter, the phib approach uses a single on–off switch based on the single nodal upwind value.
The simplicity of the phib scheme also results in a notable reduction in computation requirements.
Further, the scheme can be implemented in an implicit time-stepping solution with only a small
increase in computation time.

APPENDIX A: DERIVATION OF MODIFIED EQUATION

In terms of Figure 1(b), Taylor series expansions in space and time about node P can be written as

Cn
W =Cn

P − �x
�C
�x

∣∣∣∣
n

P
+ �x2

2

�2C
�x2

∣∣∣∣∣
n

P

+ O(�x3)

Cn+1
P =Cn

P + �t
�C
�t

∣∣∣∣
n

P
+ �t2

2

�2C
�t2

∣∣∣∣∣
n

P

+ O(�t3)

(A1)

Rearrangement and use of the governing equation (12) to rewrite the second derivative in time as
a second derivative in space leads to the finite-difference approximations

�C
�x

∣∣∣∣
n

P
= Cn

P − Cn
W

�x
+ �x

2

�2C
�x2

∣∣∣∣∣
n
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+ O(�x2)

�C
�t

∣∣∣∣
n

P
= Cn+1

P − Cn
P

�t
− u2�t

2

�2C
�x2

∣∣∣∣∣
n

P

+ O(�t2)

(A2)

which on substitution into (12) result in the first-order modified equation (14). Further, a central
difference (second-order) approximation of the second space derivative at node P is

�2C
�x2

∣∣∣∣∣
P

=
�C
�x

∣∣∣∣
e
− �C

�x
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w

�x
+ O(�x2) (A3)
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and Taylor expansions about the faces e and w of the Pth volume give

CP =Ce − �x

2

�C
�x

∣∣∣∣
e
+ O(�x2)

CW =Cw − �x

2

�C
�x

∣∣∣∣
w

+ O(�x2)

(A4)

Rearrangement and substitution of approximations of the first derivatives at the faces into (A3)
will result in the approximation for the second derivative at node P given in (16); the truncation
error in this approximation will be O(�x2) provided that atleast second-order approximations are
used for the face values Ce and Cw.
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